Pressure-Volume-Temperature Relations of Propane ${ }^{\ddagger}$

Raymond H. P. Thomas ${ }^{\dagger}$ and Roland H. Harrison*
Bartlesville Energy Technology Center, U.S. Department of Energy, Bartlesville, Oklahoma 74003

Abstract

A comprehensive experimental Investigation of the lsothermal and lsochorlc $\mathbf{P - V}-\boldsymbol{T}$ properties of pure propane ($99.998 \mathrm{~mol} \%$) covered the ranges 258.15-623.15 K, 0.8-12.5 $\mathrm{mol} \mathrm{dm}^{-3}$, and 0-400 bar. Measurements on the compressed single-phase fluid and the vapor-liquid, iwo-phase reglon were used to derlve vapor pressures, critical constants ($P_{c}=42.4709$ bar, ρ_{c} $=4.955 \mathrm{~mol} \mathrm{dm}^{-3}, T_{c}=369.85 \mathrm{~K}$), $P-V-T$ relations for the vapor and Ilquild branches of the coexistence envelope, and virial coefficients (B_{0}, C_{0}, D_{0}).

Introduction

The varied technologic role of propane as a cryogenic fluid, a hydrocarbon fuel, and a source hydrocarbon for petrochemical processing is sufficiently impressive, both in terms of its tonnage use and because of its mechanical fluid properties, that a more exact knowledge of its $P-V-T$ surface is of great concern. Propane is not well characterized in thermodynamic terms, as compared to methane and ethane. A significant improvement in the data base can lead to substantially improved tables of properties and to significant savings in processing costs and energy. This work was initlated under the Bureau of Mines, Department of the Interior, and continued under the Energy Research and Development Administration for about 1 year. After being inactive for a period of about 2 years, the project was supported by the Department of Energy.

Experimental Section

The operation and the accuracy of the compressibllity apparatus have been described (1-4), so only a brief summary is needed here. A sample of propane was sealed in a thinwalled pycnometer which formed a loosely fitting liner inside the compressibillty bomb. The stainless-steel liner ended in a small capillary tube of known length and diameter. Before the assembly of the bomb and liner, the capiliary was bent into a hook to complete a lock-and-key mechanism, in the assembled bomb, of which the bent capillary was the key. The pyenometer remained sealed and horizontal during assembly and the introduction of mercury into the evacuated space in the bomb and manifold of the compressibility apparatus. Mercury was metered into the void space of the assembled apparatus from a thermostated, quantitative-displacement compressor. A null-volume reading for the compressor was recorded when the pressure exerted by the mercury in the void space equaled the pressure of the sample (i.e., the vapor pressure of propane at 303.15 K). After the null setting was made, the bomb was set upright and the loosely fitting liner was forced to float upward, thereby breaking the capillary tube. Mercury under pressure then entered the liner and compressed the sample. The volume occupled by the sample was determined from the compressor setting, the volume of the pycnometer, and the null volume along with the predetermined variation of the volume of the entire system with temperature and pressure as determined in a run without sample. As usual, pressures were determined with a deadweight gauge callbrated against the vapor pressure

[^0]of pure carbon dioxide at $273.15 \mathrm{~K}, 34.8501$ bar, as determined by Sengers and Chen (5).
For the study of the coexistence envelope and vapor pressures, a piston of $0.5-\mathrm{in}$. dlameter was used. The sensitivity of the deadweight gauge with this piston is $1 / 200000$. The highest pressure obtainable with the 0.5 - in. piston is 100 bar. For the study of the supercritical temperature region and of pressure regions above 100 bar but below the critical temperature, a piston of $0.25-\mathrm{in}$. diameter was used. The sensitulty of the deadweight gauge with the latter piston is $1 / 50000$. Both gauges are of a new design by Douslin. The new feature of the design is that the vertical piston remains undisturbed while the cylinder surrounding the piston oscillates about its axis to reduce frictlonal effects at the piston-cylinder interface. Previous designs used a piston which oscillated in a fixed vertical cylinder. Here the problem of the frictional effects is solved while eliminating the movement of the piston. Corrections for the variation of the effective piston area for the 0.25 -in. piston with pressure were based on values determined by Dadson (6). The $0.5-\mathrm{in}$. piston correction factor was determined by callbration against the $0.25-\mathrm{in}$. piston.

The temperature of the compressibility bomb, controlled to $\pm 0.0005 \mathrm{~K}$, was measured with a platinum resistance thermometer that was calibrated at the National Bureau of Standards in terms of IPTS-48 (7) and was corrected to IPTS-68 (8, 9). The ice point of the thermometer did not change significantly during the investigation. The mercury vapor in the sample was calculated as loss in volume of liquid mercury, assuming that the mercury vapor exhibited the same degree of nonideality as the compressed propane sample. A similar assumption was made in previous work (4).
Pressures are expressed in bars ($1 \mathrm{bar}=10^{5} \mathrm{~Pa}$). The precision of the pressure and volume measurements was previously discussed (2). The maximum overall error in the measured compression factor, $Z=P V / R T$, varied from 0.03% at the lowest pressure and density to 0.3% at the highest temperature, pressure, and density.
Sample. The sample was purchased from Airco Industrial Gases with a reported purity of 99.993%. Propylene was the major impurity and was removed from the sample by passing the gas through a column of concentrated sulfuric acid on palladium sulfate treated Chromosorb W (40% concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$). The gas was passed through potassium hydroxide pellets to remove any sulfuric acid that might have been taken up and through magnesium perchlorate to remove any possible water. Removal of propylene was confirmed by gas chromatography. A column packed with F-20 alumina 100/120 mesh treated with hexamethyldisilazane was used. Nitrogen was found as another impurity. It was removed by alternatively cooling the sample to the temperature of liquid nitrogen, evacuating the space above the sample, and warming the sample to $60-70^{\circ} \mathrm{C}$. Seven cycles were necessary. The final purity of the sample using the F-20 alumina column was 99.998\%.

The normal procedure in this kind of study is to complete the entire series of $P-V-T$ measurements on one filling of the bomb using approximately 0.1 mol of sample. In this study, an accident occurred just after the critical temperature was reached. It was necessary to make a second filling to complete the measurements. The first filling used 4.46661 g of sample while the second filling used 4.41402 g of sample. The
Table I. P-V-T Relations for the Coexistence and Near-Critical Regions of Propane ${ }^{a-c}$

[^1]Table I (Continued)

v P

Table I (Continued)

Table I (Continued)

molecular weight of propane was calculated by using the 1969 atomic weights of $\mathrm{C}, 12.011$, and $\mathrm{H}, 1.008$, and on the assumption that the samples were 100% propane. The values of density glven in Table I are based on these values of molecular weight for both samples. The vapor-pressure values glven in Table II are, of course, independent of density but dependent on purty of sample. Although in general the normal procedure for filling the pycnometer was used for both samples, the pycnometer was unfortunately not outgassed by heating prior to the transfer of propane sample 2 into it. Thus, a small impurity of alr was introduced and led to the slightly higher vapor pressures for sample 2, as shown in Table I.

The $P-V-T$ values given in Tables III and IV for sample 2 have been corrected for the additional alr impurity by using the difference in measured pressures at the critical point of 0.0051 bar. The amount of impurity was estimated to be 0.00407%, and the moles of sample 2 are increased by 0.0014%. The corrections were made by assuming an ideal mixture and using the equation of state for air given by Yen (10). Corrected values for sample 2 and original values for sample 1 are both plotted in Figure 1.

Experimental Results

Vapor-Liquld Coexlstence Reglon. Vapor and liquid densities on the coexistence envelopes and the critical pressure, temperature, and density were derived from the original unsmoothed data for sample 1 which are recorded in Table I and Figure 1.

In the single-phase region the pressure is referred to the vertical center of the sample, and in the two-phase region to the surface of the liquid. The way in which these reference points were used to calculate the fluid head corrections has been described (2). The maximum flutd head correction was 0.0003 bar in the vapor and 0.0004 bar in the liquild. Volumes or densities in Tables I and III are bulk values. Corrections for density gradients are not involved. In Table I, at 273.15, $288.15,298.15,303.15$, and 323.15 K , some of the closely spaced points in the liquid region near the bubble point appear inverted, but the differences are due to a high $\mathrm{d} P / \mathrm{d} V$. The
differences may be due to a volume error of no more than 0.002 mL , which is within the accuracy of the callbration of the volumetric mercury compressor.

Vapor Pressure. Vapor-pressure measurements were made on sample 1 over the range 258.15 K and 2.9179 bar to the crtical point at 369.85 K and 42.4709 bar. The vapor-pressure values from 258.15 to 358.15 K were previously available in periodic reports of work in progress at the Bartiesville Energy Technology Center and used in a correlation by Goodwin (11). The vapor pressures are listed in Table II and refer to sample 1. Vapor-pressure measurements were made with various fractions of the sample condensed from 0.010 to 0.999 . The reported vapor pressure is usually the average of the pressure when $25 \%, 50 \%$, and 75% of the sample is condensed. Some points at 5% and 95% were also considered. Duplicate vapor-pressure measurements on sample 2 were made at six temperatures to tie together the measurements on the two samples. The variation of the vapor pressure over the range of $5-95 \%$ of sample condensed is about 0.01% and 0.03% at lower temperatures and pressures for samples 1 and 2, respectively. At higher temperatures (333.15 K for sample 1 , 348.15 K for sample 2) the variation is a few thousandths of a percent for sample 1 and less than 0.01% for sample 2. This small varlation in pressure with percent of sample condensed is an indication of the high purity of the sample. The vapor pressures of the second sample are higher than those of the first by about 0.01% at all temperatures at which duplicate measurements were taken, except for 303.15 K , where the second sample has a somewhat lower vapor pressure.

The vapor-pressure values listed in Table II were fitted to the Goodwin equation (11):

$$
\begin{equation*}
\ln P(\text { bar })=A+B x+C x^{2}+D x^{3}+E x(1-x)^{4} \tag{1}
\end{equation*}
$$

where $x=\left(1-T_{\mathrm{b}} / T\right) /\left(1-T_{\mathrm{b}} / T_{\mathrm{c}}\right)$ and ϵ is set equal to 1.47. T_{b}, the normal boiling temperature, was taken as 231.105 K as suggested by Das and Eubank (12). T_{c}, the critical temperature of 369.85 K , found in this work, was used. Values of the parameters were derived by using a weighted least-squares procedure (13) and are as follows: $A=0.023099, B=$

Figure 1. Vapor-liquid coexistence region of propane showing vapor pressure, coexistence envelope curve, critical point, and rectilinear diameter.
3.106110, $C=0.899696, D=-0.280092$, and $E=0.675616$. Table II lists the percent deviations from the experimental values of the values calculated by using eq 1 .

In numerous investigations, the vapor pressure of propane has been reviewed (11, 12, 14). The most recently published investigation was done by Kratzke (14). Vapor pressures
calculated by using eq 1 are higher than the experimental values obtained by Kratzke by an average of 0.06%, the disagreement increasing at higher temperatures. Kratzke's sample was reported to be 99.954 \% pure with no indication as to the impurity, and his pressure standard for the deadweight gauge was not documented.

Table II. Vapor Pressure of Propane Based on Sample 1

T/K	P/bar	$(\triangle P / P) \times 100^{2}$
258.15	2.9179	-0.033
263.15	3.4549	0.002
268.15	4.0623	0.009
273.15	4.7462	0.009
278.15	5.5125	0.007
283.15	6.3672	0.007
288.15	7.3159	0.003
293.15	8.3650	0.001
298.15	9.5202	-0.006
303.15	10.7891	-0.005
313.15	13.6918	-0.007
323.15	17.1300	0.000
333.15	21.1635	0.005
343.15	25.8618	0.004
348.15	28.4858	0.002
353.15	31.3087	-0.006
358.15	34.3518	-0.002
363.15	37.6327	0.001
365.15	39.0183	0.002
367.15	40.4500	0.001
368.15	41.1852	0.001
369.15	41.9345	-0.001
369.65	42.3160	-0.001
369.75	42.3931	0.000
369.85	42.4709	0.001

$$
\begin{aligned}
& a P / P=\left(P_{o b s}-P_{c a l c}\right) / P_{\text {obs }} \text { where } P_{c a l c} \text { is the pressure } \\
& \text { calculated from equation } 1 \text { : }
\end{aligned}
$$

Single-Phase Regton. The procedures followed were similar to those prevlously described (4). Compressibility measurements were made on isotherms in the single-phase liquid and vapor regions up to the two-phase region. These were used to establish the coexistence envelope of sample 1. Such measurements were made up to the critical temperature of 369.85 K and slightly beyond to 370.15 K . Duplicate measurements on sample 2 were then made at the critical temperature and six subcritical temperatures so as to compare sample 1 and sample 2 . For subcritical densities, the compressibillites were within an average of 0.005% of each other. The orthobaric liquid densitles obtained at 303.15, 323.15, 343.15 , and 363.15 K were an average of $0.0028 \mathrm{~mol} \mathrm{dm}^{-3}$ higher for sample 2 than for sample 1. The orthobaric vapor densities for sample 2 at $323.15,343.15$, and 363.15 K were an average of $0.0004 \mathrm{~mol} \mathrm{dm}^{-3}$ higher than those obtained for sample 1. After the duplicate measurements on sample 2 were complete, additional measurements were made just below the critical temperature and up to 373.15 K . At the critical temperature and at 373.15 K , measurements were taken starting at 0.8 and $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ and increasing in denstty thereafter in steps of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ until a pressure of 100 bar was obtained. The $0.5-\mathrm{in}$. pliston was then replaced by the $0.25-\mathrm{in}$. piston, and the same density incrementing procedure was followed at 369.85 and 373.15 K up to 400 ber. Measurements were also taken at the critical density, $\rho=4.955 \mathrm{~mol} \mathrm{dm}^{-3}$, at each
isotherm above 369.85 K . Measurements in the high-pressure region up to 400 bar were then taken for 323.15 and 348.15 K. Isotherms from 398.15 to 623.15 K in steps of 25 K were then taken by using densities as described for the critical and 373.15 K isotherm with the difference that only the 0.25 -in. piston was used. After each point at 400 bar was taken, a check measurement was taken at $0.8 \mathrm{~mol} \mathrm{dm}^{-3}$ (last row in Table III) at the same temperature to ensure that the sample had not changed during the isotherm. The difference between the original and check measurements at $0.8 \mathrm{~mol} \mathrm{dm}^{-3}$ was usually about 0.003%, except at 623.15 K , where the pressure appeared to be higher by 0.03% or 0.0121 bar. A final check made at 373.15 K and $0.8 \mathrm{~mol} \mathrm{dm}^{-3}$ showed a pressure of 20.3521 bar which was only 0.01% above the original value. This change is well within the accuracy of the measurement and confirms that the sample had not decomposed.

The values of pressure given in Tables III and IV were adjusted for the air impurity by a minimum of 0.0016%, a maximum of 0.0171%, and an average of 0.0044%. The corrections decreased with increasing temperature and were highest at intermediate densities. In the temperature range from 323.15 to 370.15 K where duplicate points were taken, the corrected values for sample 2 differ from sample 1 values by an average of only 0.0035% and are plotted together in Figure 1.

Jepson, Richardson, and Rowlinson (15) studied the solubility of mercury in propane, but their data are too sparse to use for making corrections. However, Haar and Sengers (16) also studied the solubility of mercury in dense gases. They found the corrections to be important only at high temperature (400 ${ }^{\circ} \mathrm{C}$) and actually to be very small in the region where the bulk of $P-V-T$ measurements using liquid mercury in the system exist.

Derived Results and Discussion

Coexistence Envelope and the Critical Point. Orthobaric liquid and vapor densities were determined from measurements of pressure, volume, and temperature made on sample 1 and listed in Table I. The method is the same as that used for ethane (13). Orthobaric liquid densities were obtained from 258.15 to 369.15 K , and orthobaric vapor densities were obtained from 323.15 to 369.15 K . The effect of precondensation of the vapor phase is most noticeable at 323.15 K . Orthobaric vapor densities were not obtalned below 323.15 K because this required lower sample densities than could be obtained with the volume of the pycnometer and the number of moles of sample used. The values obtained for the first sample only are in Table V and Figure 1.
Equations 2 and 3 for the vapor and liquid arms of the

$$
\begin{align*}
& \rho_{\mathrm{g}} / \rho_{\mathrm{c}}= \\
& \quad 1+B_{1, \mathrm{~g}}\left|T-T_{\mathrm{c}}\right|^{\beta}+B_{2, \mathrm{~g}}\left|T-T_{\mathrm{c}}\right|^{\beta+\Delta}+B_{3, \mathrm{~g}}\left|T-T_{\mathrm{c}}\right|^{\beta+2 \Delta} \tag{2}\\
& \rho_{\mathrm{l}} / \rho_{\mathrm{c}}= \\
& \quad 1+B_{1, \mid}\left|T-T_{\mathrm{c}}\right|^{\beta}+B_{2, \mid}\left|T-T_{\mathrm{c}}\right|^{\beta+\Delta}+B_{3, \mid}\left|T-T_{\mathrm{c}}\right|^{\beta+2 \Delta} \tag{3}
\end{align*}
$$

coexistence envelope, respectively, were used to represent the orthobaric densities. These equations are the same as those used by Douslin and Harrison (4). The value of $\beta=0.347$ was derived from the slope of the straight line of $\log \left(\rho_{1}-\rho_{\mathrm{g}}\right)$ vs. \log $\left|T-T_{\mathrm{c}}\right|$. An iterative least-squares procedure was used to determine the remaining constants in the equations. The critical temperature was determined by an incremental least-squares adjustment. The critical density was determined iteratively from extrapolation of $\left(\rho_{\mathrm{g}}+\rho_{\mathrm{i}}\right) / 2$ to T_{c}. The final least-squares fit gave a value of $\Delta=0.71$ and the coefficients listed as footnotes to Table V. The value of $\beta=0.347$ is similar to the value of 0.350 found for ethane (13) and ethylene (4).

Table III. P-V-T Relations in the Supercritical Region for Sample $\mathbf{2}^{\boldsymbol{a}}$

T/K	369.85	373.15	398.15	423.15	448.15	473.15
$\mathrm{p} / \mathrm{mol} \mathrm{dm}{ }^{-3}$	P/bar					
0.8000	20.0795	20.3502	22.3694	24.3558	26.3144	28.2574
1.0000	23.8088	24.1616	26.7937	29.3715	31.9087	34.4194
1.5000	31.2108	31.7963	36.1326	40.3449	44.4707	48.5381
2.0000	36.2596	37.1124	43.3761	49.4228	55.3199	61.1218
2.5000	39.4460	40.5926	48.9559	56.9965	64.8442	72.5689
3.0000	41.2431	42.7041	53.2871	63.4633	73.4194	83.2293
3.5000	42.1003	43.8814	56.7427	69.1775	81.4072	93.5002
4.0000	42.4082	44.4922	59.6463	74.4742	89.1612	103.777
4.5000	42.4717	44.8193	62.2921	79.7018	97.0619	114.413
5.0000	42.4763	45.0450	64.9526	85.1946	105.556	125.962
5.5000	42.4819	45.3007	67.9654	91.3988	115.121	138.991
6.0000	42.5703	45.7557	71.7167	98.8374	126.427	154.247
6.5000	43.0530	46.7583	76.7903	108.239	140.326	172.689
7.0000	44.5802	48.9645	84.0207	120.605	157.914	195.556
7.5000	48.2295	53.4499	94.6332	137.347	180.603	224.410
8.0000	55.5597	61.8069	110.279	160.108	210.598	261.309
8.5000	68.6084	76.0935	133.332	191.300	249.625	308.836
9.0000	90.3646	99.1400	166.738	233.973	302.056	370.163
9.5000	124.373	135.040	212.987	291.857	370.443	
10.0000	174.372	186.266	278.103	369.870		
10.5000	246.086	260.348	366.591			
11.0000	345.621	362.073				
0.8000	20.0796	20.3500	22.3692	24.3549	26.3156	28.2586
T/K	498.15	523.15	548.15	573.15	598.15	623.15
$\rho / \mathrm{mol} \mathrm{dm}{ }^{-3}$						
0.8000	30.1828	32.0969	33.9985	35.8941	37.7837	39.6677
1.0000	36.9040	39.3728	41.8299	44.2661	46.6957	49.1171
1.5000	52.5580	56.5390	60.4974	64.4177	68.3197	72.2236
2.0000	66.8615	72.5397	78.1688	83.7658	89.3120	94.8551
2.5000	80.2008	87.7522	95.2491	102.691	110.082	117.454
3.0000	92.9477	102.573	112.135	121.626	131.037	140.477
3.5000	105.484	117.393	129.242	141.006	152.716	164.415
4.0000	118.253	132.692	147.065	161.359	175.609	189.822
4.5000	131.704	148.940	166.151	183.270	200.350	217.378
5.0000	146.372	166.771	187.133	207.454	227.688	247.935
5.5000	162.921	186.866	210.807	234.696	258.515	282.336
6.0000	182.163	210.154	238.143	266.089	293.990	321.824
6.5000	205.158	237.773	270.317	303.005	335.439	367.852
7.0000	233.324	271.109	308.958	346.903	384.603	
7.5000	268.221	312.089	355.909	399.849		
8.0000	312.067	362.836				
8.5000	367.526					
0.8000	30.1835	32.0969	34.0012	35.8949	37.7848	39.6798

Table IV. Pressure on the Critical Isometric Line, $\rho=4.955$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$, for Sample 2^{a}

T / K	$P /$ bar	T / K	$P /$ bar
369.85	42.4709	370.55	43.0100
369.86	42.4779	370.65	43.0868
369.87	42.4863	371.15	43.4719
369.88	42.4936	372.15	44.2444
369.89	42.5012	373.15	45.0198
369.90	42.5093	398.15	64.7005
369.91	42.5170	423.15	84.6921
369.92	42.5246	448.15	104.784
369.93	42.5321	473.15	124.866
369.95	42.5474	498.15	144.973
370.00	42.5854	523.15	165.074
370.05	42.6246	548.15	185.118
370.15	42.7012	573.15	205.138
370.25	42.7789	598.15	225.083
370.35	42.8560	623.15	245.018
370.45	42.9329		
a These values have been adjusted for 0.00407% air impurity.			

Table V. Orthobaric Liquid and Vapor Densities of Propane

T/K	$\begin{aligned} & a_{2}(a b s) \\ & m o: \mathrm{dm}^{-3} \end{aligned}$	$\begin{gathered} \left(u_{i}(003)-\sigma_{8}(c a i c)\right)^{a} \\ \pi 01 \mathrm{dm}^{-3} \end{gathered}$	$\begin{aligned} & \hat{S}_{\mathrm{g} \text { (obs })} \\ & \mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$		${ }^{\prime \prime}$
258.15	32.415	0.000			500
263.15	12.270	-0.004			500
268.15	12.126	-0.003			505
273.15	11.983	0.003			50
278.15	11.829	0.203			500
283.15	21.671	0.003			500
288.15	11.507	0.002			500
293.15	21.338	0.001			300
298.15	11.165	0.002			500
303.15	10.982	-0.000			500
313.25	10.586	-0.011			500
323.15	10.173	-0.000	0.8758	-0.0012	500
333.15	9.597	0.000	1.1219	0.0021	500
343.15	9.144	0.001	1.4482	0.0014	500
348.15	8.825	0.003	1.6565	0.0000	500
353.25	8.459	0.003	1.9107	-0.0016	500
358.25	8.020	0.000	2.2362	-0.0022	499
363.25	7.451	-0.001	2.6920	-0.0012	436
365.15	7.145	-0.005	2.9492	0.0028	484
367.15	6.756	0.001	3.2941	0.0038	457
368.15	6.496	0.003	3.5273	-0.0054	300
369.25	6.093	0.020	3.9204	0.0130	50

```
a 的(calc)/mol dm
```



```
b }\mp@subsup{}{g}{|
```

The critical point which we have determined in this paper from the experimental coexistence envelope satisfies the definition of the critical point. It is the point at which the first and second derivatives of pressure with respect to volume are zero, namely, $(\partial P / \partial V)_{T_{0}}=0$ and $\left(\partial^{2} P / \partial V^{2}\right)_{T_{\mathrm{c}}}=0$. The 369.85 K isotherm, plotted in Figure 1, satisfies this condition. The critical pressure, 42.4709 bar, is taken from the experimental data at $T_{\mathrm{c}}=369.85 \mathrm{~K}$ and $\rho_{\mathrm{c}}=4.955 \mathrm{~mol} \mathrm{dm}^{-3}$. These values and prevlous ones are given in Table VI. Previous values for the critical constants were reviewed by Kobe and Lynn (17) and later by Kudchadker, Alani, and Zwolinski (18). Lack of agreement may arise from varied purities of the samples. Several investigators reported having a pressure difference between the dew and bubble points of 0.04 bar, which is about 30 times larger than the values found in this work. Beattie et al. (19) had a sample with only 0.004-bar difference between the dew and bubble points at $75^{\circ} \mathrm{C}$ but the critical values still differ from the present values. The most recent values reported by Mousa, Kay, and Kreglewski (20) were determined from a sample having a dew to bubble point pressure difference of less

Table VI. Critical Constants for Propane

ref	$T_{\mathrm{c}} / \mathrm{K}$	$P_{\mathrm{c}} / \mathrm{bar}$	$\rho_{\mathrm{c}} /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
19	369.96	42.567	5.13
21	369.82	42.496	
22	369.81	42.486	4.92
20	369.74	42.537	4.85
11^{a}	369.80	42.4204	4.96
this work	369.85	42.4709	4.955

a Data from this work up to 353.15 K was included in their correlation.

Table VII. Second Virial Coefficient for Propane

	$-B_{0} /\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$			
T_{68} / K	this work	ref 24	ref 26	ref 25
323.15	0.328		0.32962	
333.15	0.3080			
343.15	0.2878			0.293
348.15	0.2790			
353.15	0.2710			
358.15	0.2631			
363.15	0.2555			
365.15	0.2525			
367.15	0.2502			
368.15	0.2483			
369.15	0.2468			
369.85	0.2462			
373.15	0.2413	0.247	0.24015	0.197
398.15	0.2089	0.211	0.20721	
423.15	0.1814	0.183		
448.15	0.1584	0.160		
473.15	0.1385	0.139		
498.15	0.1213	0.121		
523.15	0.1064	0.109		
548.15	0.0931	0.096		
573.15	0.0813			
598.15	0.0707			
623.15	0.0610			

than 0.1 bar. For comparison, several other experimental values of the critical properties determined by Kay and Rambosek (21) and Clegg and Rowlinson (22) are also listed in Table VI along with a correlated value of Goodwin (11).

Thermal Pressure Coefficlent. A definitive study of the variations of the isochoric derivative, $\gamma_{V}=(\partial P / \partial T)_{V}$, in the vicinity of the critical point was not made because of slight inconsistencies of the measurements using the two different samples of propane. The slope of the vapor-pressure curve at $T_{\mathrm{c}}=369.85 \mathrm{~K}$ was found to be $0.778 \mathrm{bar} \mathrm{K}^{-1}$ for sample 1, and the slope of the critical isometric line above 369.85 K was found to be 0.765 bar K $^{-1}$ from the corrected sample 2 data.

Virlal Coefficlents. The virlal equation of state is given in eq 4.

$$
\begin{equation*}
P V / R T=1+B_{0} / V+C_{0} / V^{2}+D_{0} / V^{3}+\ldots \tag{4}
\end{equation*}
$$

The temperature-dependent coefficients B_{0}, C_{0}, and D_{0} are defined in the equations

$$
\begin{array}{ll}
B(V)=\{(P V / R T)-1\} V & B_{0}=\lim _{1 / V \rightarrow 0}\{B(V)\} \\
C(V)=\left\{B(V)-B_{0}\right\} V & C_{0}=\lim _{1 / V \rightarrow 0}\{C(V)\} \\
D(V)=\left\{C(V)-C_{0}\right\} V & D_{0}=\lim _{1 / V \rightarrow 0}\{D(V)\} \tag{7}
\end{array}
$$

and were evaluated by using the graphical procedure described in ref 4. Second virial coefficients were derived from 323.15 to 623.15 K , third virial coefficients from 343.15 to 623.15 K , and fourth virial coetficients from 373.15 to 623.15 K .

Table VII lists the values for the second virial coefficients found in this work and those derived from the analysis (23) of

Table VIII. Third and Fourth Virial Coefficients for Propane

T / K	$10^{2} C_{0} /$ $\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2}\right)$	$10^{4} \mathrm{D}_{\mathrm{o}}$ $\left(\mathrm{dm}^{9} \mathrm{~mol}^{-3}\right)$
343.15	1.916	
348.15	1.909	
353.15	1.978	
358.15	1.991	
363.15	2.000	
365.15	1.982	
368.15	2.035	
369.85	2.035	+1.10
373.15	1.995	-0.10
398.15	1.825	0
423.15	1.627	+0.10
448.15	1.480	0
473.15	1.345	-0.10
498.15	1.243	+0.20
523.15	1.155	+0.25
548.15	1.083	+0.90
573.15	1.010	+1.85
598.15	0.941	+2.58
623.15	0.878	

the data of Beatte, Kay, and Kaminsky (24). The values based on the data of Beattie, Kay, and Kaminsky are more negative by 1.5% than those found in this work. The agreement is better if the two highest temperatures reported by Beattle et al. are omitted. A possible reason for the greater disagreement at higher temperatures is the decomposition of the sample used by Beattle et al., as noted in thelr paper. Deschner and Brown's (25) values for the second virial coefficient are in poor agreement with values of this work. Second vilial coefficlents based on the data of Cherney, Marchman, and York (26) and calculated by Pompe and Spurling (27) are 0.6% less negative than the values of this work. Third and fourth virlal coefficlents are listed in Table VIII. Graphs of the second and third virlal coefficients would be relatively smooth and have the usual shape, including the hump in the third virial at lower temperatures.

Acknowledgment

The initial direction of this project by D. R. Douslin and his design of the new deadweight gauges are especlally recognized. The assistance of S. E. Knipmeyer in servicing the equipment and machining the $0.25-\mathrm{in}$. deadwelght gauge piston and cylinder and J. F. Messerly for the analysis and purification of the sample is deeply appreciated.

Glossary

A, B,	constants in Goodwin vapor-pressure equation
C, D,	
$B_{1, q,}$	constants in equation of saturated vapor densities
$B_{2,9}$,	
$B_{3,9}$	
$B_{1,1}$,	constants in equation of saturated liquid densities
$B_{2,1}$	
$B_{3,1}$	
B_{0}	second virial coefficient, $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
C_{0}	third virial coefficient, $\mathrm{dm}^{8} \mathrm{~mol}^{-2}$
D_{0}	fourth virial coefficient, $\mathrm{dm}^{6} \mathrm{~mol}^{-3}$

pressure, bar
gas constant, dm^{3} bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
temperature, K
molal volurne, $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$\left(1-T_{b} / T\right) /\left(1-T_{b} / T_{c}\right)$
compressibility factor $=P V / R T$
Greek Letters
$\beta, \Delta \quad$ exponential constants in equations of saturated gas and liquid densities
$\gamma \quad(\partial P / \partial T)_{v}$
$\epsilon \quad$ exponential constant in Goodwin equation $\rho \quad$ molal density, $\mathrm{mol} \mathrm{dm}^{-3}$
Subscripts
b denotes property at normal boiling point
c denotes property at critical point
g denotes property of gas phase
denotes property of llquid phase

Lherature Cited

(1) Beattle, J. A. Proc. Am. Acad. Arts Scl. 1934, 69, 389.
(2) Douslin, D. R.; Moore, R. T.; Dawson, J. P.; Waddington, G. J. Am. Chem. Soc. 1958, 80, 2031.
(3) Douslin, D. R.; Harrison, R. H.; Moore, R. T. J. Chem, Thermodyn. 1989, $1,305$.
(4) Douslin, D. R.; Harrison, R. H. J. Chem. Thermodyn. 1876, 8, 301
(5) Sengers, J. M. H. Levelt; Chen, W. T. J. Chem. Phys. 1972, 56, 595.
(6) Dadson, R. S. "The Accurate Measurement of High Pressures and the Precise Calibration of Pressure Balances"; The Instttution of Mechantcal Engineers and the International Union of Pure and Applled Chemistry, Joint Conference on Thermodynamics and Transport Propertles of Fluids, July 10-12, 1957; The Insttution of Mechanical Engineers: London, 1958.
(7) Stimson, H. F. J. Res. Natl. Bur. Stand., Sect. A 1881, 65, 139.
(8) Comité International des Polds et Mesures. Metrologla 1988, 5, 35.
(9) Douglas, T. B. J. Res. Natt. Bur. Stand., Sect. A 1969, 73, 451.
(10) Yen, Ming-Shlt. Masters Thesis, University of Idaho, Moscow, ID, 1975. Private communication from Richard T. Jacobsen, Chairman of the Mechanical Engineering Department.
(11) Goodwin, R. D. "Provisional Thermodynamic Functions of Propane from 85 to 700 K at Pressures to 700 Bar"; NBS IR 77-860, July 1977; prepared for the American Gas Association, 1515 Wison Boulevard, Arlington, VA 22209.
(12) Das, T. R.; Eubank, P. T. "Advances in Cryogenic Engineering"; Plenum Press: New York, 1973; Vol. 18, p 208.
(13) Douslin, D. R.; Harrison, R. H. J. Chem. Thermodyn. 1973, 5, 491.
(14) Kratzke, H. J. Chem. Thermodyn. 1880, 12, 305.
(15) Jepson, W. B.; Rlchardson, M. J.; Rowlinson, J. 'S. Trans. Faraday Soc. 1957, 53, 1586.
(18) Haar, L.; Sengers, J. M. H. Levelt. J. Chem. Phys. 1970, $52,5069$.
(17) Kobe, K. A.; Lynn, R. E., Jr. Chem. Rev. 1853, 52, 117.
(18) Kudchadker, A. P.; Alani, G. H.; Zwolinski, B. J. Chem. Rev. 1988, $68,659$.
(19) Beattle, J. A.; Poffenberger, N.; Hadlock, C. J. Chem. Phys. 1935, 3, 96.
(20) Mousa, A. H. N.; Kay, W. B.; Kreglewski, A. J. Chem. Thermodyn. 1872, 4, 301.
(21) Kay, W. B.; Rambosek, G. M. Ind. Eng. Chem. 1953, 45, 221.
(22) Clegg, H. P.; Rowlinson, J. S. Trans. Faraday Soc. 1955, 51, 1333.
(23) Hirshielder, J. O.; McClure, F. T.; Weeks, I. F. J. Chem. Phys . 1942, 10, 201.
(24) Beattle, J. A.; Kay, W. C.; Kaminsky, J. J. Am. Chem. Soc. 1937, $59,1589$.
(25) Deschner, W. W.; Brown, G. G. Ind. Eng. Chem. 1840, 32, 836.
(26) Cherney, B. J.; Marchman, H.; York, R. Ind. Eng. Chem. 1948, 41 , 2653.
(27) Pompe, A.; Spurling, T. H. "Virial Coefficients for Gaseous Hydrocarbons", Division of Applied Organic Chemistry Technical Paper No. 1; Commonwealth Scientific and Industrlal Research Organization: Melbourne, Australla, 1974.

[^2]
[^0]: ${ }^{\dagger}$ Present address: Alled Chemical Co., Buffalo, NY 14240.
 \ddagger Contribution No. 247 from the thermodynamics research branch at the Bartlesville Energy Technology Center.

[^1]: a Brackets enclose results inside the vapor-liquid envelope.
 b Dashed line brackets denote placement of phase boundary by

[^2]: Received for review February 25, 1961. Accepted September 8, 1981.

